Home
Class 12
MATHS
(ln 8)/(ln 10)=log 8=3log2...

`(ln 8)/(ln 10)=log 8=3log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

(ln8)/(ln10)=log8=3log2

If log_(2)(log_(8)x)=log_(8)(log_(2)x), find the value of (log_(2)x)^(2)

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............

" 4) "log_(8)1+log_(8)2+log_(8)8=log_(8)(1+2+3)

If log 3,log(3^(x)-2) and backslash log(3^(x)+4) are in arithmetic progression,the x is equal to a.(8)/(3) b.log3^(8) c.8d. log 2^(3)

|(log)_3 512(log)_4 3(log)_3 8(log)_4 9|xx|(log)_2 3(log)_8 3(log)_3 4(log)_3 4|= (a) 7 (b) 10 (c) 13 (d) 17

det [[log_ (2) 512, log_ (4) 3log_ (3) 8, log_ (3) 9]] xxdet [[log_ (2) 3, log_ (8) 3log_ (3) 4, log_ (3) 4 ]] =