Home
Class 11
MATHS
omega is a complex cube root of unity, t...

`omega` is a complex cube root of unity, then `(1-omega)(1-pmega^2)(1-omega^4)(1-omega^8)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then (1+omega)(1+(omega)^2)(1+(omega)^4)(1+(omega)^8)) ….....upto 2n factors = …....

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a complex cube root of unity, then (1-omega+(omega)^2)^3 =

If omega is a complex cube root of unity, then (1+omega^2)^4=

If omega is a cube roots of unity then (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(8))=

If omega is the complex cube root of unity, then find (1-omega^2)(1-omega^4)

If omega is a complex cube root of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a complex cube root of unity, then (1+omega-(omega)^2)^3 - (1-omega+(omega)^2)^3 =