Home
Class 10
MATHS
" 11."tan2sqrt(x)=(sqrt(5)+sqrt(3))/(sqr...

" 11."tan2sqrt(x)=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))-(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

If 2sqrt(x)=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))-(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), then the value of x is :

simplify (sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))-(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(3)-sqrt(5))(sqrt(5)+sqrt(3))

(sqrt(3)-sqrt(5))(sqrt(5)+sqrt(3))

(sqrt(5)-2)(sqrt(3)-sqrt(5))

Simplify: (3sqrt(2)-2sqrt(2))/(3sqrt(2)+2sqrt(3))+(sqrt(12))/(sqrt(3)-sqrt(2)) (ii) (sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))