Home
Class 11
MATHS
If (n-1)Cr=(k^2-3)nC(r+1),then k belong...

If `(n-1)C_r=(k^2-3)nC_(r+1)`,then k belong to

Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(n-1)C_r=(k^2-3)^nC_(r+1), then k belongs to (a) (-oo,-2] (b) [2,oo) (c) [-sqrt3, sqrt3] (d) [sqrt3,2]

If ^n-1C_r=(k^2-3)^n C_(r+1),then k in

If ""^(n-1)C_r=(k^2-3)""^nC_(r+1) , then kin :

"^(n-1)C_r=(k^2-8)^(n)C_(r+1) then k is

If n-1C_r=(k^2-3)^nC_(r+1), then (a) (-oo,-2] (b) [2,oo) (c) [-sqrt3, sqrt3] (d) (sqrt3,2]

If n-1C_r=(k^2-3)^nC_(r+1), then (a) (-oo,-2] (b) [2,oo) (c) [-sqrt3, sqrt3] (d) (sqrt3,2]

If C((n-1),r)=(k^(2)-3)C(n,(r+1)) then range of k is