Home
Class 11
MATHS
Let vecd=lambda(veca xx vecb)+mu(vecb xx...

Let `vecd=lambda(veca xx vecb)+mu(vecb xx vecc)+nu(vecc xx veca)` and `[(veca,vecb,vecc)]=1/8,` then `lambda+mu+nu=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecd = gamma(veca xx vecb) + mu(vecb xx vecc) + v(vecc xx veca) and [veca vecb vecc]=1/8 , then lambda = mu + v is equal to:

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc^(2)] , then lambda is equal to

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc]=(1)/(8) and vecd.(veca+vecb+vecc)=8 then lambda+mu+t equals …………

If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc]=(1)/(8) and vecd.(veca+vecb+vecc)=8 then lambda+mu+t equals …………

If alpha(veca xx vecb)+beta(vecb xx vecc)+lambda(vecc xx veca)=0 , then

If alpha(veca xx vecb)+beta(vecb xx vecc)+lambda(vecc xx veca)=0 , then

Let veclamda=veca times (vecb +vecc), vecmu=vecb times (vecc+veca) and vecv=vecc times (veca+vecb) , Then

If veca xx vecb + vecb xx vecc + vecc xx veca = 0 . Show that the vectors veca, vecb, vecc are coplanar.