Home
Class 12
MATHS
y=(sqrt(1-sin2x))/(sqrt(1+sin2x))...

y=(sqrt(1-sin2x))/(sqrt(1+sin2x))

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)

If y=cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))](0

Prove that : cot^(-1)(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))=(x)/(2),0

show that , cot ^(-1) {(sqrt(1+sin x)+sqrt(1- sin x))/( sqrt(1+sin x)- sqrt(1-sin x))}=(x)/(2),0 lt x lt (pi)/(2)

If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]] where 0 lt x lt pi/2 find (dy)/(dx)

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2);x in(0,(pi)/(4))

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

Prove that: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x in(0,(pi)/(4))

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

Differentiate w.r.t x : tan^-1{(sqrt (1+sin x) + sqrt (1-sin x))/(sqrt (1+sin x) - sqrt (1-sin x))}, 0 < x < pi/2