Home
Class 12
MATHS
Let f(x),xgeq0, be a non-negative co...

Let `f(x),xgeq0,` be a non-negative continuous function, and let `F(x)=int_0^xf(t)dt ,xgeq0,` if for some `c >0,f(x)lt=cF(x)` for all `xgeq0,` then show that `f(x)=0` for all `xgeq0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x), xge0 , be a non-negative continous function,and let F(x) = int_(0)^(x)f(t)dt, xge0 , if for some cgt0,f(x)lec F(x) for all xge0 , then show that f(x)=0 for all xge0 .

Let f(x),x>=0, be a non-negative continuous function,and let F(x)=int_(0)^(x)f(t)dt,x>=0, if for some c>0,f(x) =0, then show that f(x)=0 for all x>=0.

Let f(x),xgeq0, be a non-negative continuous function. If f^(prime)(x)cosxlt=f(x)sinxAAxgeq0, then find f((5pi)/3)

Let f(x),xgeq0, be a non-negative continuous function. If f^(prime)(x)cosxlt=f(x)sinxAAxgeq0, then find f((5pi)/3)

Let f(x),xgeq0, be a non-negative continuous function. If f^(prime)(x)cosxlt=f(x)sinxAAxgeq0, then find f((5pi)/3)

Let fa n dg be differentiable on R and suppose f(0)=g(0)a n df^(prime)(x)lt=g^(prime)(x) for all xgeq0. Then show that f(x)lt=g(x) for all xgeq0.

Let fa n dg be differentiable on R and suppose f(0)=g(0)a n df^(prime)(x)lt=g^(prime)(x) for all xgeq0. Then show that f(x)lt=g(x) for all xgeq0.

Let fa n dg be differentiable on R and suppose f(0)=g(0)a n df^(prime)(x)lt=g^(prime)(x) for all xgeq0. Then show that f(x)lt=g(x) for all xgeq0.

Let fa n dg be differentiable on R and suppose f(0)=g(0)a n df^(prime)(x)lt=g^(prime)(x) for all xgeq0. Then show that f(x)lt=g(x) for all xgeq0.

Let f:[0,oo)->R be a continuous strictly increasing function, such that f^3(x)=int_0^x t*f^2(t)dt for every xgeq0. Then value of f(6) is_______