Home
Class 12
MATHS
lim(x rarr0)(a^(x)-1)/(x)=log(e)a...

lim_(x rarr0)(a^(x)-1)/(x)=log_(e)a

Promotional Banner

Similar Questions

Explore conceptually related problems

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

Use formula lim_(x rarr0)(a^(x)-1)/(x)=log(a) to find lim_(x rarr0)(2^(x)-1)/((1+x)^((1)/(2))-1)

lim_(x rarr0)(a^(x)-b^(x))/(x)=log_(e)((a)/(b))

lim_(x rarr0)(sqrt(1+x)-1)/(log_(e)(1+x))

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(x)-1)/(log(1+x))

lim_(x rarr0)(1)/(x)log_(e)((1+ax)/(1-bx))

lim_(x rarr0)(e^(3x)-1)/(log(1+5x))