Home
Class 11
MATHS
" The value of "lim(x rarr1)(x^(P+1)-Px-...

" The value of "lim_(x rarr1)(x^(P+1)-Px-x+P)/((x-1)^(2));(P in N)" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr1)(x^(p+1)-px+p)/((x-1)^(2)) equals

Evaluate lim_(xrarr1)(x^(P+1)-(P+1)x+P)/((x+1)^2)

The value of [lim_(x rarr1)(tan^(2)(x-1))/(x^(3)-x^(2)-x+1)]

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

The value of lim_(x rarr1)((4)/(pi)tan^(-1)x)^(1/(x^(2)-1)) equal to

The value of 'n' for which lim_(x rarr1)(e^(x-1)-x)/((x-1)^(n)) exists is/ are

The value of lim_(x rarr1)(x^(n)+x^(n-1)+x^(n-2)+...x^(2)+x-n)/(x-1)

lim_(x rarr1)(x^((2)/(3))-2(x^((1)/(3))+1))/((x-1)^(2)) is equal to

The value of lim_(x to1)(p/(1-x^p)-q/(1-x^q)),p ,q , in N , equal (a) (p+q)/2 (b) (p q)/2 (c) (p-q)/2 (d) sqrt(p/q)

The value of lim_(x to1)(p/(1-x^p)-q/(1-x^q)),p ,q , in N , equal (a) (p+q)/2 (b) (p q)/2 (c) (p-q)/2 (d) sqrt(p/q)