Home
Class 11
MATHS
sum(r=0)^(n-1)(^nC(r))/(^nC(r)+^(n)C(r+1...

sum_(r=0)^(n-1)(^nC_(r))/(^nC_(r)+^(n)C_(r+1))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(n-1)(nC_(r))/(nC_(r)+^(n)C_(r+1)) is eqaul to

The value of sum_(r=0)^(n-1) (""^nC_r)/(""^nC_r+ ""^n C_(r+1)) equals a. n+1 b. n/2 c. n+2 d. none of these

sum_(r=0)^(n)(-2)^(r)*(nC_(r))/((r+2)C_(r)) is equal to

If sum_(r=0)^(n-1)((^nC_(r))/(nC_(r)+^(n)C_(r+1)))^(3)=(4)/(5) then n=

The value of sum_(r=1)^(n)(sum_(p=0)^(n)nC_(r)^(r)C_(p)2^(p)) is equal to

sum_(r=1)^(10) r. (""^nC_r)/(""^nC_(r-1)) =

If sum_(r=0)^(n-1)(("^nC_r)/(^nC_r+^nC_(r+1)))^3=4/5 then n=

If a_(n)=sum_(r=0)^(n)(1)/(nC_(r)), then sum_(r=0)^(n)(r)/(nC_(r)) equals

sum_(r=0)^(n)nC_(r)(sin rx) is equal to