Home
Class 12
MATHS
tan^(4)x+tan^(4)y+tan^(-1)2=pi...

tan^(4)x+tan^(4)y+tan^(-1)2=pi

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1) x + tan^(-1) y =(pi)/(4) then...

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

If tan^(-1)x + tan^(-1)y=4pi//5 , then cot^(-1)x + cot^(-1)y is equal to

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

If tan ^(-1) x-tan ^(-1) y=-(pi)/(4) then

Show that int_(0)^((pi)/(2))(tan^(4)x)/(1+tan^(4)x)dx=(pi)/(4)

tan^(-1)x +tan^(-1)y = (3pi)/4 Then cot^(-1) x + cot^(-1) y is :

If tan^(-1) x +tan^(-1) y = pi/4 , xy lt 1 , then prove that x+y+xy=1 .

if tan^(-1)x+ tan^(-1)y= (4 pi)/(5) then cot^(-1)x+ cot^(-1)y is equal to