Home
Class 12
MATHS
[" (1) The solution of differential eque...

[" (1) The solution of differential equetion "yy'=x((y^(2))/(x^(2))+(f(y^(2)/x^(2)))/(f'(y^(2)/x^(2))))" is "],[" (d) "f(y^(2)/x^(2))=(x^(2)" (b) "x^(2)f(y^(2))x^(2))=c^(2)y^(2)" (c) "x^(2)f(y^(2)/x^(2))=cquad " (d) "N*0*T],[" (2) Find value of "(7)/(2),2,2 pi" ) "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of differential equation yy'=x((y^(2))/(x^(2))+(f((y^(2))/(x^(2))))/(f'((y^(2))/(x^(2))))) is

The solution of differential equation y y^(prime)=x((y^2)/(x^2)+(f((y^2)/(x^2)))/(f^(prime)((y^2)/(x^2)))) is

The solution of differential equation y y^(prime)=x((y^2)/(x^2)+(f((y^2)/(x^2)))/(f^(prime)((y^2)/(x^2)))) is

The solution of differential equation y y^(prime)=x((y^2)/(x^2)+(f((y^2)/(x^2)))/(f^(prime)((y^2)/(x^2)))) is

If f(x) = cos(log x) , then f(x^(2)) . f(y^(2)) -1/2[f(x^(2)y^(2)) +f(x^(2)/y^(2))]=

If f(x)=cos(logx) , then f(x^(2))f(y^(2))-(1)/(2)[f(x^(2)y^(2))+f((x^(2))/(y^(2)))]=

If f(x)=cos(log x), then f(x^(2))f(y^(2))-(1)/(2)[f((x^(2))/(y^(2)))+f(x^(2)y^(2))] has the value

Let f((x+y)/(2))=(f(x)+f(y))/(2),x,y in R, if f'(0)=-1, then f'((x)/(2))=