Home
Class 12
MATHS
lim(x rarr 0) (int0^x(t^2+e^(t^2))^(1/(1...

`lim_(x rarr 0) (int_0^x(t^2+e^(t^2))^(1/(1-cost)))/(e^x-1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(int_(0)^(x) xe^(t^(2))dt)/(1+x-e^(x)) is equal to

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

lim_(x rarr0)(int_(0)^(1)sin t^(2)dt)/(x(1-cos x)) equals

The value of lim_(x rarr0^(+))(int_(1)^(cos x)(cos^(-1)t)dt)/(2x-sin(2x)) is equal to

lim_ (x rarr0) (x (e ^ (2 + x) -e ^ (2))) / (1-cos x)

lim_(x rarr 0) ((1+x+x^2)-e^x)/x^2 =

The value of (lim_(x rarr0)(1)/(x^(6))int_(0)^(x^(2))sin(t^(2))dt) is equal to

lim_(x rarr 0^+)(x e^(1//x))/(1+e^(1//x))=