Home
Class 11
MATHS
let g(x)=x^c e^(cx) and f(x)=int0^x t e...

let `g(x)=x^c e^(cx) and f(x)=int_0^x t e^(2t)(1+3t^2)^(1/2)dt`. if `L=lim_(x->oo) (f'(x))/(g'(x))` is non-zero finit number then :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2t) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The value of L . Is :

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2t) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The value of L . Is :

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2r) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The valur of C is:

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2r) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The valur of C is:

What is F^1(x) if F(x)= int_0^x e^(2t)sin 3t dt

If f(x)=int_(0)^(x)e^(t^(2))(t-2)(t-3)dt for all x in(0,oo) , then

If f(x)=e^(g(x)) and g(x)=int_(2)^(x)(dt)/(1+t^(4)) then f'(2) is equal to

Let f(x)=int_(x^(2))^(x^(3)) for x>1 and g(x)=int_(1)^(x)(2t^(2)-Int)f(t)dt(x<1) then