Home
Class 11
MATHS
The number of solutions of equation log3...

The number of solutions of equation `log_3 x log_4 x log_5 x= log_3 x log_4 x +log_5 x`

Text Solution

Verified by Experts

Let `log_5x = t`, then, `x = 5^t`
`=>log_3x = log_3 5^t = tlog_3 5`
`=>log_4x = log_4 5^t = tlog_4 5`
So, our equation becomes,
`tlog_3 5*tlog_4 5*t = tlog_3 5*tlog_4 +t`
`=>t^3(log_3 5log_4 5) - t^2(log_3 5log_4 5) -t = 0`
`=>t(t^2(log_3 5log_4 5) - t(log_3 5log_4 5) -1) = 0`
`=>t = 0 or t^2(log_3 5log_4 5) - t(log_3 5log_4 5) -1 = 0`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

The set of all solutions of the equation log_(3)x log_(4)x log_(5)x=log_(3)x log_(4)x+log_(4)x log_(5)x+log_(5)x+log_(3)x is

The sum of solutions of the equation log_(2)x log_(4)x log_(6)x=log_(2)x*log_(4)x+log_(4)x log_(6)x+log_(6)x*log_(2)x is equal to

The set of all solutions of the equation log_(3)x log_(4)x log_(3)x=log_(3)x log_(4)x+log_(4)x log_(5)x+log_(5)x log_(3)x is

FInd the square of the sum of the roots of the equation log_3x.log_4x.log_5x=log_3x.log_4x+ log_4x.log_5x +log_5x.log_3x

Find the square of the sum of the roots of the equation log_3x*log_4x*log_5x=log_3x*log_4x+log_4x*log_5x+log_3x*log_5x

Find the square of the sum of the roots of the equation log_3x*log_4x*log_5x=log_3x*log_4x+log_4x*log_5x+log_3x*log_5x

Find the square of the sum of the roots of the equation log_3x*log_4x*log_5x=log_3x*log_4x+log_4x*log_5x+log_3x*log_5x

Find the square of the sum of the roots of the equation log_3x*log_4x*log_5x=log_3x*log_4x+log_4x*log_5x+log_3x*log_5x

The number of solutions of log_(4)(x-1)= log_(2) (x-3) .