Home
Class 11
MATHS
Prove that ("cos " 6x + " cos " 4x...

Prove that `("cos " 6x + " cos " 4x)/("sin " 6x - "sin " 4x) = " cot x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ( " cos " 4x + " cos " 3x + " cos " 2x)/(" sin " 4x + " sin " 3x + " sin " 2x) = " cot 3x

(cos 2x sin x + cos 6x sin 3x)/(sin 2x sin x + sin 6x sin 3x) =cot 5x

Prove that : (cos 4x sin 3x - cos 2x sin x)/(sin 4x .sin x + cos 6x .cos x) = tan 2x

Show that (sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x) = tan 2x

Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x

Prove that 3 (sin x-cos x) ^ (4) +4 (sin ^ (6) x + cos ^ (6) x) +6 (sin x + cos x) ^ (2) = 13

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x

Evalute the following integrals int (cos 6x - cos 4x)/(sin 6x - sin 4x) dx

Prove that: 3 (sin x-cos x) ^ (4) +6 (sin x + cos x) ^ (2) +4 (sin ^ (6) x + cos ^ (6) x) -13 = 0

Prove that (cos5x + cos3x)/(sin5x + sin3x) = cot4x