Home
Class 11
MATHS
If f : R rarr R, f(x) = 2x ; g : R rarr ...

If `f : R rarr R, f(x) = 2x ; g : R rarr R, g(x) = x + 1,` then `(fg) (2)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f: R rarr R, f(x)= x-2, g: R rarr R, g(x)= x + 2 then (f+ g) (x) = ……..

If quad f:R rarr R,f(x)=2x;g:R rarr R,g(x)=x+1 then (fg)(2) equals

If f:R rarr R,f(x)=2x;g:R rarr Rg(x)=x+1, then (f*g)(2) equals

If f : R rarr R, f(x) = x^(2) + 2x - 3 and g : R rarr R, g(x) = 3x - 4 then the value of fog (x) is

If f : R rarr R, f(x) = x^(2) + 2x - 3 and g : R rarr R, g(x) = 3x - 4 then the value of fog (x) is

If f : R rarr R , f(x) = [x] , g : R rarr R , g(x) = sinx , h : R rarr R , h(x) = 2x , then ho(gof) = ..........

If f : R rarr R, f(x) = x^(2) - 5x + 4 and g : R^(+) rarr R, g(x) = log x , then the value of (gof) (2) is

If f : R rarr R, f(x) = x^(2) - 5x + 4 and g : R^(+) rarr R, g(x) = log x , then the value of (gof) (2) is

If f:R rarr R,f(x)=2x-1 and g:R rarr R,g(x)=x^(2) then (gof)(x) equals

f:R rarrR , f(x) =x^(2) , g : R rarr R , g(x) = 2^(x) , then {x|(fog)(x) = (gof)(x)} = ............