Home
Class 12
MATHS
If the graph of the function f(x)=(a^(x)...

If the graph of the function `f(x)=(a^(x)-1)/(x^(n)(a^(x)+1))` is symmetric about `y`-axis then `n` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If the graph of the function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is symmetrical about the y-axis, then 'n' equals

If the graph of the function f(x)=(a^x-1)/(x^n(a^x+1)) is symmetric about y-axis, then n equals

If the graph of the function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is symmetrical about the y-a xi s,then n equals 2 (b) (2)/(3)(c)(1)/(4) (d) (1)/(3)

If the graph of the function f(x) = (a^x -1)/(x^(n) (a^x+1)) is symmetrical about the y-axis, then n equals a)2 b) 2/3 c) 1/4 d) -1/3

If the graph of the function f(x)=(a^x-1)/(x^n(a^x+1)) is symmetrical about the y-axis ,then n equals (a)2 (b) 2/3 (c) 1/4 (d) 1/3

If the graph of the function f(x)=(a^x-1)/(x^n(a^x+1)) is symmetrical about the y-a xi s ,then n equals 2 (b) 2/3 (c) 1/4 (d) 1/3

If the graph of the function f(x)=(a^x-1)/(x^n(a^x+1)) is symmetrical about the y-a xi s ,t h e nn equals 2 (b) 2/3 (c) 1/4 (d) 1/3

If the real valued function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is even then n equals

The graph of the function y = log_(a) (x + sqrt(x^(2) + 1)) is not symmetric about the origin.

The graph of the function y = log_(a) (x + sqrt(x^(2) + 1)) is not symmetric about the origin.