Home
Class 12
MATHS
[y=[x+sqrt(x^(2)+1)]^(m)],[" Prove that ...

[y=[x+sqrt(x^(2)+1)]^(m)],[" Prove that "],[(1+x^(2))y_(2)+xy_(1)-m^(2)y=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y={x+sqrt(x^(2)+1)}^(m), show that (x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

y=[log(x+sqrt(x^(2)+1))]^(2) then prove that (x^(2)+1)y_(2)+xy_(1)=2

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y = (x+ sqrt(x ^(2) -1))^(m) then (x ^(2) -1) y_(2) + xy _(1)=

y = [x + sqrt(x^2 + 1)]^p , prove that (x^2 + 1)y_2 + xy_1 - p^2y = 0

If quad y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If x=sin((1)/(a)log y), show that (1-x^(2))y_(2)-xy_(1)-a^(2)y=0

If x=sin((1)/(a)log y), show that (1-x^(2))y_(2)-xy_(1)-a^(2)y=0

If y = sin(mcos^(-1)x) then prove that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0 .