Home
Class 12
MATHS
" Find the inverse of "f(x)=2^(log(10)x)...

" Find the inverse of "f(x)=2^(log_(10)x)+8" and hence solve the equation "f(x)=f^(-1)(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse function of f(x)=log_(2)x

Find domain of f(x)=log_(10)(1+x^(3)) .

Find domain of f(x)=log_(10)(1+x^(3)) .

Find domain of f(x)=log_(10)(1+x^(3)) .

Find domain of f(x)=log_(10)(1+x^(3)) .

Find domain of f(x)=log_(10)(1+x^(3)) .

Let f:[(1)/(2),oo)rarr[(3)/(4),oo), where f(x)=x^(2)-x+1. Find the inverse of f(x) Hence or otherwise solve the equation,x^(2)-x+1=(1)/(2)+sqrt(x-(3)/(4))

If f(x)=|log_(10)x| then at x=1

Let f :[1/2,oo)rarr[3/4,oo), where f(x)=x^2-x+1. Find the inverse of f(x). Hence or otherwise solve the equation, x^2-x+1=1/2+sqrt(x-3/4.

Let f:[1//2, infty)rarr[3//4, infty) where f(x)= x^2-x+1 . Find the inverse of f(x). Hence or otherwise solve the equation, x^2-x+1=1/2+sqrt(x-3//4)