Home
Class 11
MATHS
[" A feal valued function "f(x)" satisfi...

[" A feal valued function "f(x)" satisfies the functional equation "f(x-y)=f(x)f(y)-f(a-x)f(a-x)f(a-x)f(a+y)" fil "a+y" where a is a "],[" given constant and "f(0)=1," then "f(2a-x)" is equal to "-(a)+f(a-x)],[[" (A) "-f(x)," (B) "f(x)," (C) "f(a)+f(a-x)," (D) "f(-x)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

A real valued function f(x) satisfies the functional equation f(x-y) = f(x)f(y)-f(a - x)f(a + y) where a is a given constant and f(0)=1, f(2a-x) is equal to:

A real valued function f (x) satisfies the functional equation f (x-y)= f(x) f(y) - f(a-x) f(a +y) where a is a given constant and f (0) =1, f(2a -x) is equal to

A real valued function f (x) satisfies the functional equation f (x-y)=f(x)f(y)- f(a-x) f(a+y) where 'a' is a given constant and f (0) =1, f(2a-x) is equal to :

A real valued function f(x) satisfies the functional equation : f(x-y)=f(x)f(y)-f(a-x)f(a+y) , where a is given constant and f(0)=1.f(2a-x) is equal to :

A ral valued functin f (x) satisfies the functional equation f (x-y)=f(x)f(y)- f(a-x) f(a+y) where 'a' is a given constant and f (0) =1, f(2a-x) is equal to :

A real valued function f(x) satisfies the functional equation f(x-y)=f(x)f(y)-f(a-x)f(a+y) where a is a given constant and f(0), f (2a-x)=

A real valued function f (x) satisfied the functional relation f (x-y)=f (x)f(y) -f(a-x) f(a+y) where a is a given constant and f(0) =1. Then f (2a-x) is equal to-