Home
Class 12
MATHS
|(0, a-b, a-c),(b-a, 0, b-c),(c-a, c-b, ...

`|(0, a-b, a-c),(b-a, 0, b-c),(c-a, c-b, 0)|= (A) abc (B) `a+b+c` (C) 0 (D) a^2b^2c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

|{:(a,-b,a-b),(b,c,b-c),(2,1,0):}|=0 then a,b,c are in …………..

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

If a!=b!=c\ and\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then A. a+b+c=0 B. a b+b c+c a=0 C. a^2+b^2+c^2=a b+b c+c a D. a b c=0

If a^2+b^2+c^2-a b-b c-c a=0, then (a) a+b=c (b) b+c=a (c) c+a=b (d) a=b=c

If a >0 and discriminant of a x^2+2b x+c is negative, then Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c

If a!=6,b,c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 then abc