Home
Class 12
MATHS
int0^pi(xtanx)/(tanx+secx).dx=[pi(pi-2)]...

`int_0^pi(xtanx)/(tanx+secx).dx=[pi(pi-2)]/2`

Text Solution

Verified by Experts

`I=int_0^pi (xtanx)/(tanx+secx)dx`
`=int_0^pi (xsinx/cosx)/(sinx/cosx+1/cosx)dx`
`I=int_0^pi (xsinx)/(1+sinx)-(1)`
`I=int_0^pi((pi-x)sin(pi-x))/(1+sin(pi-x)`
`I=int_0^pi((pi-x)sinx)/(1+sinx)-(2)`
`I=int_0^pi[(xsinx)/(1+sinx)+((pi-x)sinx)/(1+sinx)]dx`
`2I=int_0^pi[(xsinx+pisinx-xsinx)/(1+sinx)]dx`
`2I=pi int_0^pi sinx/(1+sinx)dx`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^pi (xtanx)/(secx+tanx)dx

int_0^pi((xtanx)/(secx+tanx)) dx

int_(0)^(pi)(xtanx)/(secx+tanx)dx=

int_(0)^(pi)(xtanx)/(secx+cosx)dx=

int_0^pi(pi tanx)/(secx+cosx)dx

int_(0)^(pi)(tanx)/(secx+cosx)dx=

Prove that int_(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1) .

int_(0)^(pi)(xtanxdx)/(tanx+secx)=(pi)/(2)(pi-2)

Prove that : int_0^pi (xtanx)/(secxcosecx)dx =pi^2/4 .

int_0^pi tanx/(sinx+tanx)dx