Home
Class 11
MATHS
If tan A and tan B are the roots of x^2-...

If `tan A` and `tan B` are the roots of `x^2-px + q = 0` , then the value of` sin^2(A+ B)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Given tan A and tan B are the roots of x^2-ax + b = 0 , The value of sin^2(A + B) is

IF tan A , tan B are the roots of x ^2 -px+q=0 , the value of sin ^2(A+B) is

Given tan A and tan B are the roots of x^(2)-ax+b=0 . The value of sin^(2)(A+B) is

Given tan A and tan B are the roots of x^(2)-ax+b=0 ,The value of sin^(2)(A+B) is

If tan A and tan B are the roots of the quadratic equation x^2-px + q =0 then value of sin^2(A+B)

Given tan A and tan B are the roots of equation x^(2)-ax+b=0 . The value of sin^(2)(A+B) is a) (a^(2))/(a^(2)+(1-b)^(2)) b) (a^(2))/(a^(2)+b^(2)) c) (a^(2))/((a+b)^(2)) d) (b^(2))/(a^(2)+(1-b)^(2))