Home
Class 12
MATHS
[" A square "P(1)P(2)P(3)P(4)" is drawn ...

[" A square "P_(1)P_(2)P_(3)P_(4)" is drawn in the complex plane with "P_(1)" at "(1,0)" and "P_(3)" at "(3,0)" .Let "],[P_(n)" denotes the point "(x_(n),y_(n))n=1,2,3,4" .Find the numerical value of the product of "],[" complex numbers "(x_(1)+iy_(1))(x_(2)+iy_(2))(x_(3)+iy_(3))(x_(4)+iy_(4))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If ^(2n+1)P_(n-1):^(2n-1)P_(n)=3:5, then find the value of n.

If .^(n-1) P_(3) : P_(4) = 1 , 10 find n.

IF 25025 = p_(2)^(x1),p_(2)^(x2),p_(3)^(x3),p_(4)^(x4) find the values of p_(1), pz, p_(3), p_(4) and x_(1), x_(2), x_(3), x_(4) .

If (x^(4)+2x.i )-(3x^(2)-iy)=(3-5i)+(1+2iy) then find the real value of x and y.

Given (x_(1) + iy_(1)) (x_(2) + iy_(2))…(x_(n) + iy_(n)) = a + ib, show that (x_(1)^(2)+y_(1)^(2))(x_(2)^(2) + y_(2)^(2))(x_(3)^(2) + y_(3)^(2))…(x_(n)^(2) + y_(n)^(2)) = a^(2) + b^(2)

Let n_(1),n_(2),n_(3),n_(4) be vectors normal to the planes p_(1),P_(2)P_(3),P_(4) respectively,then the vector perpendicular to the lines of intersection of p_(1) and p_(2), and p_(3) and p_(4), is

Prove that 1+1* ""^(1)P_(1)+2* ""^(2)P_(2)+3* ""^(3)P_(3) + … +n* ""^(n)P_(n)=""^(n+1)P_(n+1).

Prove that 1+1* ""^(1)P_(1)+2* ""^(2)P_(2)+3* ""^(3)P_(3) + … +n* ""^(n)P_(n)=""^(n+1)P_(n+1).

Prove that 1+1* ""^(1)P_(1)+2* ""^(2)P_(2)+3* ""^(3)P_(3) + … +n* ""^(n)P_(n)=""^(n+1)P_(n+1).