Home
Class 9
MATHS
a^(2)b(a-b^(2))+ab^(2)(4ab-2a^(2))-a^(3)...

a^(2)b(a-b^(2))+ab^(2)(4ab-2a^(2))-a^(3)b(1-2b)

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: 4ab(a-b)-6a^(2)(b-b^(2))-3b^(2)(2a^(2)-a)+2ab(b-a)

Simplify : 6a^(2)+3ab+5b^(2)-2ab-b^(2)+2a^(2)+4ab+2b^(2)-a^(2) .

Prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

Simplify: a^(2)b(a^(3)-a+1)-ab(a^(4)-2a^(2)+2a)-b(a^(3)-a^(2)-1)

Using properties of determinants prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

If a and b are real and i=sqrt(-1) then sin[i ln((a+ib)/(a-ib))] is equal to 1) (2ab)/(a^(2)-b^(2)) 2) (-2ab)/(a^(2)-b^(2)) 3) (2ab)/(a^(2)+b^(2)) 4) (-2ab)/(a^(2)+b^(2))

Prove the following : |{:(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2)):}|=-(a^(3)+b^(3))^(2) .

Prove that |{:(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2)):}|=(1+a^(2)+b^(2))^(3)

Show that |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))|=(1+a^(2)+b^(2))^(3)