Home
Class 10
MATHS
In an equilateral triangle A B C if A...

In an equilateral triangle `A B C` if `A D_|_B C` , then `5A B^2=4A D^2` (b) `3A B^2=4A D^2` (c) `4A B^2=3A D^2` (d) `2A B^2=3A D^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

In an equilateral triangle A B C , if A D_|_B C , then (a) 2\ A B^2=3\ A D^2 (b) 4\ A B^2=3\ A D^2 (c) 3\ A B^2=4\ A D^2 (d) 3\ A B^2=2\ A D^2

In an equilateral triangle A B C if A D_|_B C , then A D^2 = (a) C D^2 (b) 2C D^2 (c) 3C D^2 (d) 4C D^2

In an equilateral triangle A B C if A D_|_B C , then A D^2 = (a)C D^2 (b) 2C D^2 (c) 3C D^2 (d) 4C D^2

If A B C is an equilateral triangle such that A D_|_B C , then A D^2= (a) 3/2D C^2 (b) 2\ D C^2 (c) 3\ C D^2 (d) 4\ D C^2

In an equilateral A B C , A D_|_B C , prove that A D^2=3\ B D^2

In an equilateral triangle A B C the side B C is trisected at D . Prove that 9\ A D^2=7\ A B^2

If D is the mid-point of the side B C of triangle A B C and A D is perpendicular to A C , then 3b^2=a^2-c ^2 (b) 3a^2=b^2 3c^2 b^2=a^2-c^2 (d) a^2+b^2=5c^2

If D is the mid-point of the side B C of triangle A B C and A D is perpendicular to A C , then 3b^2=a^2-c ^2 (b) 3a^2=b^2 3c^2 b^2=a^2-c^2 (d) a^2+b^2=5c^2

A B C is a right triangle right-angled at A and A D_|_B C . Then, (B D)/(D C)= mm (a) ((A B)/(A C))^2 (b) (A B)/(A C) (c) ((A B)/(A D))^2 (d) (A B)/(A D)

In A B C , A D is perpendicular to B C . Prove that: A B^2+C D^2=A C^2+B D^2 (ii) A B^2-B D^2=A C^2-C D^2