Home
Class 14
MATHS
If log(12) 27=a, then log6 16 is a. (3-a...

If `log_(12) 27=a,` then `log_6 16` is a. `(3-a)/(4(3+a))` b. `(3+a)/(4(3-a))` c. `(4(3+a))/((3-a))` d. `(4(3-a))/((3+a))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(12)27=a then log_(6)16 has a value ( i )3((4-a)/(4+a))( ii) ((3-a)/(3+a))( iii) 4((3-a)/(3+a))( iv ) none of these

If log_(8)x=(2)/(3), then the value of x is a.(3)/(4)b .(4)/(3)c.3d.4

If log_(x)((9)/(16))=-(1)/(2), then x is equal to a.-(3)/(4) b.(3)/(4) c.(81)/(256)d.(256)/(81)

If 2x^(log_(4)3)+3^(log_(4)x)= 27 , then x is equal to

If 2x^(log_(4)3)+3^(log_(4)x)= 27 , then x is equal to

If log_(b)3=4 and log_(b^(2))27=(3a)/(2)

If (log_(2)a)/(2)=(log_(3)b)/(3)=(log_(4)c)/(4) and a^((1)/(2))b^((1)/(3))c^((1)/(4))=24 then

If 3^(x) = 4^(x-1) , then x = a. (2 log_(3) 2)/(2log_(3) 2-1) b. 2/(2-log_(2)3) c. 1/(1-log_(4)3) d. (2 log_(2)3)/(2 log_(2) 3-1)

If log_(3){5+4log_(3)(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) log_(2)16