Home
Class 14
MATHS
[" 88.The function "f(x)=(sec^(-1)x)/(sq...

[" 88.The function "f(x)=(sec^(-1)x)/(sqrt(x-[x]))" ,where [.] denotes the "],[" greatest integer less than or equal to "x" is defined for all "x],[" belonging to "],[[" (a) "R],[" (b) "R-{(-1,1)uu(n|n in Z)}],[" (c) "R^(+)-(0,1)],[" (d) "R^(+)-{n|n in N}]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] denotes the greatest integers less than or equal to x is defined for all x belonging to

The domain of the function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] denotes the greatest integers less than or equal to x is defined for all x belonging to

The function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] denotes the greatest integer less or equal to x, is defined for all x in

The real valued function f(x)=(cosec^(-1)x)/(sqrt(x-[x])) , where [x] denotes the greatest integer less than or equal to x, is definde for all x belonging to :

The function f(x)=(sec^(-1)x)/(sqrt(x-[x]), where [x] denotes the greatest integer less than or equal to x , is defined for all x in (a) R (b) R-{(-1,1)uu{n"|"n in Z}} (c) R-(0,1) (d) R-{n|n in N}

The function f(x)=(sec^(-1)x)/(sqrt(x-[x]), where [x] denotes the greatest integer less than or equal to x , is defined for all x in (a) R (b) R-{(-1,1)uu{n"|"n in Z}} (c) R-(0,1) (d) R-{n|n in N}

The function f(x)=(sec^(-1)x)/(sqrt(x-[x]), where [x] denotes the greatest integer less than or equal to x , is defined for all x in (a) R (b) R-{(-1,1)uu{n"|"n in Z}} (c) R-(0,1) (d) R-{n|n in N}