Home
Class 12
MATHS
If u=a x+b ,t h e n(d^n)/(dx^n)(f(a x+b)...

If `u=a x+b ,t h e n(d^n)/(dx^n)(f(a x+b))` is equal to a.`(d^n)/(d u^n)(f(u))` b. `a(d^n)/(d u^n)(f(u))` c. `a^n(d^n)/(d u^n) f(u)` d. `a^(-n)(d^n)/(dx^n)(f(u))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=ax+b, then (d^(n))/(dx^(n))(f(ax+b)) is equal to a.(d^(n))/(du^(n))(f(u)) b.a(d^(n))/(du^(n))(f(u)) c.a^(n)(d^(n))/(du^(n))f(u) d.a^(-n)(d^(n))/(dx^(n))(f(u))

If u_n = 2cos n theta then u_1u_n - u_(n-1) is equal to

If u_(n)=int(log x)^(n)dx, then u_(n)+nu_(n-1) is equal to :

If U_(n)=2cos n theta, then U_(1)U_(n)-U_(n-1) is equal to -

If U_n=2 cosntheta then U_1U_n-U_(n-1) is equal to

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a) (f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c) f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a) (f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c) f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

f_(n)(x)=e^(f_(n-1^(x))) for all n inN and f_0(x) = x , then (d)/(dx){f_(n)(x)} is