Home
Class 12
MATHS
The value of lim(x->0) ( int0^x f dt)/(...

The value of `lim_(x->0) ( int_0^x f dt)/(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x->0) ( int_0 ^ (x^2) cost^2 dt)/( xsin x) is

Evaluate: lim_(x->0)(int_0^xcost^2dt)/x

The value of lim_(x rarr0)(int_0^(x^2) cost^2dt)/(x sin x) is

The value of lim_( x to 0) (int_(0)^(x) sin t^(2) dt) / x^(2) is

Let f be a non-negative function in [0, 1] and twice differentiate in (0, 1). If int_0^x sqrt(1-(f'(t))^(2))dt=int_0^x f(t)dt , 0 lexle1 and f(0)=0 then the value of lim_(x to0)int_0^xf(t)/x^2 dt is

Let f be a non-negative function defined on the interval [0,1] . If int_0^x sqrt(1-(f'(t))^(2))dt=int_0^x f(t)dt , 0 lexle1 and f(0)=0 then the value of lim_(x to0)int_0^xf(t)/x^2 dt is

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

The value of lim_(x->0) cosec^4 x int_0^(x^2) (ln(1 +4t))/(t^2+1) dt is