Home
Class 9
MATHS
If a + b + c = 0, show that a^(3) + b^(3...

If `a + b + c = 0`, show that `a^(3) + b^(3) + c^(3) = 3abc`
The following are the steps involved in showing the above result. Arrange them in sequential order
(A) `a^(3) + b^(3) + 3ab (-c) = -c^(3)`
(B) `(a + b)^(3) = (-c)^(3)`
(C) `a + b + c = 0 rArr a + b = -c`
(D) `a^(3) + b^(3) + 3ab (a +b) = -c^(3)`
(E) `a^(3) + b^(3) + c^(2) = 3abc`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a + 2b + c= 0 , then show that: a^(3) + 8b^(3) + c^(3)= 6abc

If a+b=c , show that a^(3)+b^(3)+3abc=c^(3)

If a alpha b and b alpha c , show that a^3+b^3+c^3 alpha 5 abc .

If a^(1/3)+b^(1/3)+c^(1/3)=0 show that (a+b+c)^(3)=27 abc

If a, b c are real and a^(3)+b^(3)+c^(3) =3abc and a+b+c ne0 , then the relation between a, b,c will be

If a, b and c are three positive real numbers, then show that a^3 + b^3 + c^3 > 3abc .

In /_\ABC show that a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3abc

If a, b, c are real, a^(3)+b^(3)+c^(3)=3abc and a+b+c ne 0 , then relation between a, b, c will be

(a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b) ^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)