Home
Class 12
MATHS
Let Sn=sum(r=1)^oo 1/n^r and sum(n=1)^k ...

Let `S_n=sum_(r=1)^oo 1/n^r` and `sum_(n=1)^k (n-1)S_n=5050,` then `k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S_n=sum_(r=0)^oo 1/n^r and sum_(n=1)^k (n-1)S_n = 5050 then k= (A) 50 (B) 505 (C) 100 (D) 55

Let S_n=sum_(r=0)^oo 1/n^r and sum_(n=1)^k (n-1)S_n = 5050 then k= (A) 50 (B) 505 (C) 100 (D) 55

If S_n=sum_(r=0)^n 1/(nC_r) and t_n=sum_(r=0)^n r/(nC_r), then t_n/S_n=

Let S_n=sum_(k=0)^n n/(n^2+k n+k^2) and T_n=sum_(k=0)^(n-1)n/(n^2+k n+k^2) ,for n=1,2,3,......., then

Let S_n=sum_(k=0)^n n/(n^2+k n+k^2) and T_n=sum_(k=0)^(n-1)n/(n^2+k n+k^2) ,for n=1,2,3,......., then

If S_(n)=sum_(r=0)^(n)(1)/(nC_(r)) and sum_(r=0)^(n)(r)/(nC_(r)), then (t_(n))/(S_(n))=

Let u_(n)=sum_(k=1)^(n)(k) and v_(n)=sum_(k=1)^(n)(k-0.5) . Then lim_(n rarr oo)(sqrt(u_(n))-sqrt(v_(n))) equals

If s_n= sum_(r=0)^n 1/(^"nC_r) and t_n=sum_(r=0)^n r/("^nC_r) then t_n/s_n is equal to

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .