Home
Class 12
MATHS
Let n=P1^(a1)*P2^(a2)*P3^(a3) ............

Let `n=P_1^(a_1)*P_2^(a_2)*P_3^(a_3) ......... P_k^(a^k)` where `(p_1,p_2......P_k)` ,are primes and `a_1,a_2,a_3......a_k in N` then number of ways in which n can be expressed as the product of two factors which are prime to one another.

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a natural number such that n=P_1^(a_1)P_2^(a_2)P_3^(a_3)...P_k^(a_k) where p_1,p_2,...p_k are distinct primes then minimum value of log n is:

Let a_1,a_2,a_3,... be in A.P. With a_6=2. Then the common difference of the A.P. Which maximises the product a_1a_4a_5 is :

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

Let a_1,a_2,a_3 ......, a_n are in A.P. such that a_n = 100 , a_40-a_39=3/5 then 15^(th) term of A.P. from end is

The sixth term of an A.P., a_1,a_2,a_3,.............,a_n is 2 . If the quantity a_1a_4a_5 , is minimum then then the common difference of the A.P.

If a_1, a_2, a_3(a_1>0) are three successive terms of a G.P. with common ratio r , for which a_3>4a_2-3a_1 holds is given by

Let a_1,a_2 ,a_3 …..be in A.P. and a_p, a_q , a_r be in G.P. Then a_q : a_p is equal to :