Home
Class 12
MATHS
Find the value of x tan^-1 ((x-1)/(x+1))...

Find the value of x `tan^-1 ((x-1)/(x+1)) + tan^-1 ((2x-1)/(2x+1)) = tan^-1 (23/36)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of xtan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve the Equation : tan^-1 ((x-1)/(x+2)) + tan^-1 ((2x-1)/(2x+1)) = tan^-1 23/36

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve : tan ^(-1) ""(x-1)/(x+1) + tan^(-1) ""(2x -1)/(2x+1)= tan ^(-1) "" (23)/(36)