Home
Class 12
MATHS
Show that the four points P ,\ Q ,\ R ,\...

Show that the four points `P ,\ Q ,\ R ,\ S` with position vectors ` vec p ,\ vec q ,\ vec r ,\ vec s` respectively such that `5 vec p-2 vec q+6 vec r-9 vec s= vec0,` are coplanar. Also find the position vector of the point of intersection of the line segments PR and QS.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the four points P,Q,R,S with position vectors vec p,vec q,vec r,vec r,vec s respectively such that 5vec p-2vec q+6vec r-9vec s=vec 0 ,are coplanar.Also find the position vector of the point of intersection of the line segments PR and QS.

Show that the four points P,Q,R,S with position vectors vecp,vecq,vecr,vecs respectively such that 5vecp-2vecq+6vecr-9vecs=vec0 , are coplanar. Also find the position vector of the point of intersection of the lines PR and QS.

Show that the found points A,B,C,D with position vectors vec a,vec b,vec c,vec d respectively such that 3vec a-2vec b+5vec c-6vec d=vec 0 ,are coplanar .Also,find the position vector of the point of intersection of the line segments AC and BD.

Four points P,Q,R and S with respective position vectors vec p , vec q , vec r and vec s are such that 5 vec p - 2vec q+ 6 vec r - 9 vec s= vec 0 . Show that the four points are coplanar and find the P.V. of the point in which the lines PQ and RS intersect.

For three vectors vec p,vec q and vec r if vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec P xx vec Q= vec R, vec Q xx vec R= vec P and vec R xx vec P = vec Q then

If vec p xxvec q=vec r and vec p*vec q=c, then vec q is

Prove that [vec(p) - vec(q) vec(q) - vec(r) vec(r) - vec(p)] = 0

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then