Home
Class 12
MATHS
tan^(-1)((u-1)/(u-2))+tan^(-1)((u+1)/(u+...

tan^(-1)((u-1)/(u-2))+tan^(-1)((u+1)/(u+2))=pi/4

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((u)/(sqrt(1-u^(2)))) and x=sec^(-1)((1)/(2u^(2)-1))u in(0,(1)/(sqrt(2)))uu((1)/(sqrt(2)),1), prove that 2(dy)/(dx)+1=0

If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)) , u in (0,1/sqrt2)uu(1/sqrt2,1) , prove that 2dy/dx+ 1 = 0 .

If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)) , u in (0,1/sqrt2)uu(1/sqrt2,1) , prove that 2dy/dx+ 1 = 0 .

"int(tan^(-1)u)/((1+u)^(2))du

If y=tan[(1)/(2)cos^-1((1-u^(2))/(1+u^(2)))+(1)/(2)sin^(-1)((2u)/(1+u^(2)))]" and "x=(2u)/(1-u^(2))," then: "(dy)/(dx)=

If quad tan((1)/(2)(cos^(-1))(1-u^(2))/(1+u^(2))+(1)/(2)(sin^(-1))(2u)/(1+u^(2))) and x=(2u)/(1-u^(2)) then (dy)/(dx)

if int x tan^(-1)xdx=u tan^(-1)x-(x)/(2)+c then u=

If u=tan^(-1)(1/(sqrt(cos 2 theta)))-tan^(-1)(sqrt(cos 2 theta)) , then sin u=

If u=tan^(-1){(sqrt(1+x^2)-1)/x} and v=2tan^(-1)x , then (d u)/(d v) is equal to......

If u =tan^(-1)((x)/(y)) show that (del^(2)u)/(delxdely) = (del^(2)u)/(delydelx) .