Home
Class 12
MATHS
[" 23.If "z(1)" and "z(z)" are two non-z...

[" 23.If "z_(1)" and "z_(z)" are two non-zero complex numbers such that "],[k_(1)+z_(1)=i_(1)+k_(2)t_(2)+n_(2)+z_(1)-arg z_(2)" is equal to "],[[" (a) "-pi," (b) "pi/2," (c) "-pi/2," (d) "0]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1)" and "z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_1|+|z_(2)| , then arg z_(1)- arg z_(2) is equal to

If z_(1) and z_(2), are two non-zero complex numbers such tha |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then arg(z_(1))-arg(z_(2)) is equal to

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| , then arg. z_(1)- arg. z_(2) equals :

If z_(1)" and "z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_1|+|z_(2)| , then arg ((z_1)/(z_2)) is equal to

If z_(1)" and "z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 then

If z_(1) and z_(2), are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then arg(z_(1))-arg(z_(2)) is equal to (1)0(2)-(pi)/(2) (3) (pi)/(2)(4)-pi

If z_(1) and z_(2) are non -zero complex numbers, then show that (z_(1) z_(2))^(-1)=z_(1)^(-1) z_(2)^(-1)

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1, then

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then