Home
Class 11
MATHS
[" The value of "lim(x rarr0)((4^(x)-1)^...

[" The value of "lim_(x rarr0)((4^(x)-1)^(3))/(sin(x)/(4)*log(1+(x^(2))/(3)))" equals "],[[" (1) "3(log4)^(3)],[" (3) "12(log4)^(3)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)((4^(x)-1)^(3))/(sin backslash(x)/(4)*log(1+(x^(2))/(3))) equals

lim_(x rarr0)((4^(x)-1)^(3))/(sin((x)/(p))ln(1+(x^(2))/(3))) is equal to

The value of lim_(x rarr 0) ((4^(x)-1)^(3))/(sin(x^(2)/4) log (1+3x)) is

lim_(x rarr0)((e^(x)-1)log(1+x))/(sin x)

lim_(x rarr0)((log(1+x^(3)))/(sin^(3)x)

lim_(x rarr0)((1+x)^(4)-1)/(x)

lim_(x rarr0)((1+x)^(4)-1)/(x)

lim_(x rarr0)(a^(sin x)-1)/(sin x)

Lim_(x rarr0)(a^(sin x)-1)/(sin x)

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a