Home
Class 12
MATHS
What is the angle between the straight l...

What is the angle between the straight lines `(m^(2)-mm)y=(mm+n^(2))x+n^(3) and(mn+m^(2))y=(mn-n^(2))x+m^(3)` where `mgtn`?

Promotional Banner

Similar Questions

Explore conceptually related problems

Add: 3m^(2)n + 5mn^(2) - 7mn and 2m^(2)n - mn^(2) + mn

The square root of x^(m^(2) - n^(2)).x^(n^(2) + 2mn).x^(n^(2)) is

Factorise : 2(m^(2)+n^(2))^(2)-3mn(m^(2)+n^(2))-2m^(2)n^(2)

Find the acute angle between the lines (x-1)/(l)=(y+1)/(m)=(1)/(n) and =(x+1)/(m)=(y-3)/(n)=(z-1)/(l) where l>m>n, and l,m,n are the roots of the cubic equation x^(3)+x^(2)-4x=4

Verify that (m + n) ( m ^(2) - mn + n ^(2)) = m ^(3) + n ^(3)

If (m + n)/(m + 3n) = (2)/(3) , find : (2n^(2))/(3m^(2) + mn) .

Find the angle between the two straight lines whose direction cosines are given by 2l+2m-n=0, mn+nl+lm=0