Home
Class 12
MATHS
Prove that: int0^(pi//2)logsinx\ dx=\ in...

Prove that: `int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)log(sinx)dx=

int_(0)^(pi//2)log(cosx)dx=

int_0^(pi//2)log(tanx)dx

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

int_(0)^(pi//2)log(tanx)dx=

Prove: int_0^(pi//2) \ log|tanx| \ dx=0