Home
Class 12
MATHS
Prove that for any two numbers x1a n dx2...

Prove that for any two numbers `x_1a n dx_2dot` `(e^(2x_1)+e^(x_2))/3> e^((2x_1+x_2)/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that for any two numbers x_1 and x_2 . (e^(2x_1)+e^(x_2))/3> e^((2x_1+x_2)/3)

Prove that for any two numbers x_1 and x_2.(2e^(x_1)+e^(x_2))/3gte^((2(x_1)+x_2)/3)

Prove that for any two numbers x_(1) and x_(2) .(e^(2x_(1))+e^(x_(2)))/(3)>e^((2x_(1)+x_(2))/(3))

Prove that for any two numbers x_(1) and x_(2) (2e^(x_1)+e^(x_2))/(3)gte(2x_(1)+x_(2))/(3)

Prove that for any two numbers x_(1) and x_(2) (2e^(x)+e^(x))/(3)gte(2x_(1)+x_(2))/(3)

Prove that for any two numbers x_(1) and x_(2) (2e^(x)+e^(x))/(3)gte(2x_(1)+x_(2))/(3)

int(e^(2x-1)-e^(1-2x))/(e^(x+2))dx

int (e ^ (2x-1) -e ^ (1-2x)) / (e ^ (x + 2)) dx

int (e^(3x)+1)^2 e^(3x)dx