Home
Class 12
MATHS
equad sin^(-1)n+cos^(-1)x=pi/2...

equad sin^(-1)n+cos^(-1)x=pi/2

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that sin^(-1) cos sin^(-1)x + cos^(-1) sin cos^(-1)x = pi /2

prove that , sin ^(-1) cos sin ^(-1 )x+cos ^(-1) sin cos ^(-1) ""x=(pi)/(2)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x = (pi)/(2), |x| le 1

Prove that the identities,sin^(-1)cos(sin^(-1)x)+cos^(-1)sin(cos^(-1)x)=(pi)/(2)|x|<=1

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If 0

A : The range of Sin^(-1)2x+Cos^(-1)2x" is "{pi} R : The range of Sin^(-1)x+Cos^(-1)x" is "{pi//2}

The value of sin ^(-1)[cos (cos ^(-1)(cos x)+sin ^(-1)(sin x))] where x in((pi)/(2), pi) is

Assertion : If 0ltxlt(pi)/2 then sin^(-1)(cosx)+cos^(-1)(sinx)=pi-2x Reason : cos^(-1)x=(pi)/2-sin^(-1)x,AA x in [-1,1]