Home
Class 12
MATHS
If A=[(2,-1),(1,3)], then A^(-1)=?...

If `A=[(2,-1),(1,3)], then A^(-1)`=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

find the rank of matrix A=[( 2,-1,1),( 3,1,-5),(1,1,1)]

Let A=[[2,1,3],[1,1,2],[3,1,1]] and A^(-1)=?

Find the value of [(1/2)^(-1) + (1/3)^(-1)]^(-1)

Prove that the point (1,2,3),(-1,1,0),(2, 1, 3) and (1, 1, 2) are coplanar.

Using vectors, find the area of triangle whose vertices are (2,1,1),(2,3,1) and (1,3,4).

1/2gt0,1/3gt0 and (1/2)(1/3)lt1 impliestan^(-1)(1/2)+tan^(-1)(1/3) ="tan"^(-1)(1/2+1/3)/(1-1/2 1/3)=tan^(-1)(1)=(pi)/4

Find the rank of the following matrices by row reduction method : [{:(1," "2,-1),(3,-1,2),(1,-2,3),(1,-1,1):}]

Find the rank of A=[[-2,-1,-3,-1],[1,2,3,-1],[1,0,1,1],[0,1,1,-1]]