Home
Class 12
MATHS
" 13.If sin "y=x sin(a+y)," then prove t...

" 13.If sin "y=x sin(a+y)," then prove that ":(dy)/(dx)=(sin^(2)(a+y))/(sin a)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin y=x sin(a+y), prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y=sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y = x sin (a + y) then show that (dy)/(dx)=(sin^2(a+y))/(sina)

If x sin (a + y) + sin a cos (a + y)= 0 , then prove that (dy)/(dx)= (sin^(2) (a + y))/(sin a)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y),\ \ prove that (dy)/(dx)=(sin ^2\ (a+y))/(sina)