Home
Class 12
MATHS
The set of all points of differentiabili...

The set of all points of differentiability of the function `f(x)={(x^2 sin\ (1/x), x!=0), (0,x=0):}` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The set of points of differentiable of the function f(x)={{:(,(sqrt(x+1)-1)/(sqrtx),"for "x ne 0),(,0,"for x=0):}

The set of points of differentiable of the function f(x)={{:(,(sqrt(x+1)-1)/(sqrtx),"for "x ne 0),(,0,"for x=0):}

The function f(x)=x^(2)"sin"(1)/(x) , xne0,f(0)=0 at x=0

Discuss the differentiability of f(x)= {( x sin(ln x^2),x!=0),( 0,x=0):} at x=0

Discuss the differentiability of f(x)= {( x sin(ln x^2),x!=0),( 0,x=0):} at x=0

Discuss the differentiability of f(x)= {( x sin(ln x^2),x!=0),( 0,x=0):} at x=0

Test differentiability and continuity of the following functions. f(x) = {(x sin (1/x), x ne 0), (0, x = 0) :} at x = 0.