Home
Class 12
MATHS
tan^(-1)(secx+tanx)...

`tan^(-1)(secx+tanx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sqrt((secx +tanx)/(secx -tan x)) and 0 lt x lt pi/2 , then dy/dx =

int(1)/(a secx+b tanx)dx=

Prove that 1/(secx-tanx)+1/(secx+tanx)=2/(cosx)

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot (a) -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K (b) 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K (c) -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K (d) 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

(d)/(dx)((secx+tanx)/(secx-tanx))=

int(1)/(secx+tanx)dx=

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.