Home
Class 12
MATHS
In a triangle ABC, a^4+b^4+c^4=2c^2(a^2+...

In a triangle `ABC`, `a^4+b^4+c^4=2c^2(a^2+b^2)` prove that `C=45^@` or `135^@`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^4+b^4+c^4=2c^2(a^2+b^2) in a /_\ABC ,prove that C= 45^@ or 135^@

If a^4 + b^4 + c^4 = 2c^2 (a^2 + b^2), prove that angle ACB = 45^@ or 135^@ .

In a triangle ABC if a^4+b^4+c^4=2c^2(a^2+b^2) , then angle C is equal to (A) 60^0 (B) 120^0 (C) 45^0 (D) 135^0

If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c^(4)=2c^(2) (a^(2)+b^(2)), then the angle opposite to the side c is-

(i) If in a triangle ABC, a^(4) + b^(4) +c^(4) - 2b^(2) c^(2) -2c^(2)a^(2)=0 , then show that, C=45^(@) or 135^(@) . (ii) In in a triangle ABC, sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , show that, one of the angles of the triangle is 30^(@) or 150^(@)

If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c^(4)=2x^(2) (a^(2)+b^(2)), then the angle opposite to the side c is-

In triangle ABC if a^(4) + b^(4) + c^(4) = 2a^(2)b^(2) + 2b^(2)c^(2) then the values of B will be-

If in a triangle ABC , a=5,b=4 ,A = (pi)/( 2) +B then C