Home
Class 12
MATHS
The function f(x)=[x^(2)]+[-x]^(2), wher...

The function `f(x)=[x^(2)]+[-x]^(2)`, where [.] denotes the greatest integer function, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.

The range of the function y=[x^(2)]-[x]^(2)x in[0,2] (where [] denotes the greatest integer function),is

For a function f(x)=(2(x^(2)+1))/([x]) (where [.] denotes the greatest integer function), if 1lexlt4 . Then

The range of the function y=[x^2]-[x]^2 x in [0,2] (where [] denotes the greatest integer function), is

The function f(x)={x} sin (pi[x]) , where [.] denotes the greatest integer function and {.} is the fractional part function, is discontinuous at

The function f(x) = {x} sin (pi [x]) , where [.] denotes the greatest integer function and {.} is the fraction part function , is discontinuous at

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous