Home
Class 12
MATHS
If fx=x+sinx, then int(pi)^(2pi)f^(-1)(x...

If `fx=x+sinx`, then `int_(pi)^(2pi)f^(-1)(x)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

int_(-pi)^( pi)sin x[f(cos x)]dx is equal to

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

If f(x)=f(pi + e - x) and int_(e)^(pi)f(x)dx=(2)/(e + pi) , then int_(e)^(pi)xf(x)dx is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to

int_(0)^(pi)(x)/(1+sinx)dx .

int_(0)^(pi)(x)/(1+sinx)dx .

If f(x) = f(pi + e - x) and int_e^(pi) f(x) dx = 2/(e + pi) , then int_e^(pi) xf(x) dx is equal to

If f(x)=f(pi+e-x) and int_(e)^( pi)f(x)dx=(2)/(e+pi) then int_(e)^( pi)xf(x)dx is equal to